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This paper attempts to improve several weaknesses in the classical theories of rubber
elasticity. It develops a formulation of the statistical thermodynamics of amorphous
materials analogous to the Gibbs formalism for conventional statistical mechanics.
This then permits the replacement of ‘phantom chains’, i.e. long polymer molecules
with the fictitious property that they experience no forces except at cross link points and
are transparent to one another, by realistic molecules which do experience forces and
which can become entangled. The crosslinked points are no longer assumed to deform
affinely with the gross behaviour of the solid. Under the simplest conditions forms like
the classical are recovered but with a different coeflicient, and the term representing the
degrees of freedom lost by crosslinking, over which the classical theories are in dispute,
is found to lie between the previous values in a formula which can reproduce the
classical results by making different assumptions. The entanglements give rise to more
complicated forms than the classical sum of squares of strain ratios, which under certain
circumstances can reproduce the Mooney-Rivlin term which when added empirically
to the free energy usually improves the fit with experiment. The general expression is
complicated, but is nevertheless an explicit function of the density of crosslinks, the
density of the rubber and the interchain forces.
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318 R. T.DEAM AND S.F. EDWARDS

1. INTRODUCTION

This study was prompted by a need to improve the ‘phantom chain’ models of polymer networks
already well known in the literature. Phantom chain models have two major defects. Firstly,
phantom chains can pass freely through one another (and themselves); secondly, there are no
molecular inter or intra chain forces. These effects have now been put into the model and the
theory developed.

The paper is divided into four sections. In the first an abstract exact formula is provided
for the free energy for an amorphous system. Just as Gibbs’s famous formula provides an abstract
formula for the statistical mechanics of systems in which all states are accessible, the new
formula extends to systems with frozen-in degrees of freedom. Although the basic ideas here
are well known, the formulation is a practical one which proves a basis for calculation. The
second section shows how the formalism fits the problem of rubber elasticity. The classical
theories all seem to use part of the formalism, but not all of it, and it is believed that by writing
down the whole problem albeit in the form of difficult expression a significant advance has been
made. The classical theories are rederived in this section. In § 3 the effect of excluded volume,
i.e. of short-range forces, is included in the calculation of the free energy of a rubber, while in § 4
the effects of entanglements are included to complete the kinds of force normally encountered.
Entanglements produce complex structure into the free energy, but it is interesting that forms
like the well known Mooney-Rivlin term appear quite naturally. They do not, however, appear
in any unique or clear way as is seen in the formulae (5.46), (5.48), (5.52), (5.53) and (5.54).
These last are the principal results of the paper.

2. STATISTICAL MECHANICS OF AMORPHOUS MATERIALS

The object of this section will be to show that the standard formulae of statistical mechanics
as applied to gases, liquids and ordered solids need modification before they can deal effectively
with disordered or amorphous solids. Since rubber is an amorphous solid it is well to tackle the
statistical mechanics properly before settling on the microscopic model that is going to be used.

The starting point of this treatment will be the need of the statistical formulation to produce
a shear modulus for a solid. Solids resist change in shape, therefore any theory of solids must
reproduce this property or their essential solidlike nature is lost. Crystalline solids are easily dealt
with in this respect. A lattice is given, the problem can then be transformed into ‘phonon gas’
coordinates and the free energy calculated using the normal formula as applied to gases. The
incorporation of shear is done by changing the shape of the lattice and recalculating the free
energy. The change in free energy with change in shape is then known and the relevant modulus
found. The substance resists change in shape (provided the correct lattice was chosen initially)
and therefore is a solid.

The same thing cannot be done for amorphous solids. No lattice is ‘given’ and thus no trans-
formation to the phonon gas can be made. The structure of an amorphous solid such as a glass or
rubber is more liquidlike than solid, yet the normal statistical methods of integrating over all
phase space for each particle will not give us any shear property. The shear property of the crystal
came from doing two separate calculations on different shapes of the same crystal lattice, so that
the microscopic topology of the crystal was conserved. This is the clue for the treatment of
amorphous solids. Some way of specifying the topology laid down at fabrication must be found,


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE THEORY OF RUBBER ELASTICITY 319

the topology being conserved in strain by the various microscopic constraintsin the solid that have
been put in when it was made. Thus, in principle, the same calculation could then be made as for
the crystal. The free energy is calculated for two different shapes of the solid with the same
topology. The shear property has been recovered. There is, however, an additional complication
not encountered with the crystal. No one topology is ‘given’. In fact a very large number of
topologies may be possible for any given method of fabrication. So there is now the problem of
calculating the free energy strained and unstrained for each topology and doing a weighted
average of these at the end. (The ‘weights’ being determined by the method of fabrication of the
solid.) If the number of possible topologies for any given method of fabrication is large enough,
then what has been calculated will be the most probable modulus (or whatever property is being
calculated) which by the usual statistical argument is equal to the average.

Trouble comes when the number of competing conserved topologies is small each with a
substantially different frec energy state associated with it; such as might be found at the gel point
for polymer systems.

These ideas may be expressed concisely in mathematical form. Consider the Gibbs formula
for the partition function Z:

Z = o fF = f PH 40, (2.1)

where f = 1/kT, H is the system Hamiltonian and f d£Q represents integration over all accessible
phase space. For a fluid the free energy is independent of the shape of the container but for a
crystal all states in phase space are not accessible, the topology of the lattice is conserved if the
crystal is strained.

Thus Zm = e Flm = f e PH dQyy, (2.2)

where the m label restricts phase space to the crystal topology. The dominant contribution to the
shear modulus is from the internal energy. In an amorphous solid such as rubber this is not the
case, short range forces dominate as far as the bulk properties are concerned and in shear the
internal energy contribution is small. There is an entropic shear effect due to the conserved
topology of the rubber. How the topology of a rubber is specified will be dealt with when specific
microscopic models are considered. Ifentropic effects only are being considered then Boltzmann’s
formula can be used:

S = kln£, (2.3)
where §'is the entropy of the system and £ the number of configurations in phase space available
to the system. If phase spaceis restricted by constraints conserving topology then the formula is

modified (as for the crystal) to Sm = kIn O, (2.4)

where £, is now the number of configurations in the restricted phase space with topology ‘m’.
Let this topology ‘m’ have a certain probability of being formed in fabrication pn. (Rarely does
the fabricator have control over his material, so that he can put in a known topology.) Thus the
entropy of such a system, the number of different topologies available being a very large number
in a statistical mechanics sense, is

where pm = OQn[R, Y pm=1. (2.6)

27-2
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320 R. T.DEAM AND S. F. EDWARDS

A weighted average over all topologies has been taken. However, if the system is strained after
fabrication the formula is

g = kmeanm = Zﬁmgm, (2'7)

where the tilde denotes the strained system. Note that

S# kY PpmInDn and On # On (2.8)

(only for an unstrained system § = §).

It is the fact that the pm does not have a tilde over it that means the system is capable of
supporting shear.

There are then three steps in the calculation of §, which is what most of the classical theories
of rubber elasticity calculate:

(1) calculate pm;

(2) calculate Si;

(8) calculate § = 3 pm Sim.

m

There is an easier way of doing this by combining all three steps (Edwards 1970, 1971).

The method calculates the free energy F from a generalized partition function. Before setting
down the method it might be useful to show the thinking behind it. In the calculation of § above
there are really two systems in which the statistical mechanics is done. Firstly, the fabrication of
the amorphous solid in which the pm are to be calculated; then the altered system (it may be
strained or at a different temperature, magnetization, etc.) in which the free energy of that
topology is to be found Fr,.

Pictorially
state TAVAPpA My Ty Vg P M3
[T 29)
topology ‘m’ ‘m’
A B

For system A, pm (the probability of making topology ‘m’) can befound by allowing a// topologies
at T,, V,, etc. and using the Gibbs formula

pm = e~ MAFwF) = 7,17 (2.10)
where Zy = fe"ﬂ‘HA d@Qm; Z= fe‘ﬂAHA de. (2.11)

H, is the Hamiltonian of system A. f df2m, means integration over all phase space with topologies
‘m’, alternatively this could have been written as f d(m —f(£2)) df2; i.e. an integration over all
phase space with a delta function constraint picking out the desired topology ‘m’. Given this
topology F has to be found. This is the free energy of topology ‘m” in the altered system (B). So
using the Gibbs formula again

. N J' e~/And 0, (2.12)

Z= f e~FBHE 4, (2.13)
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THE THEORY OF RUBBER ELASTICITY 321

The tilde over the d’s represents the change in phase space due to going from system A to
system B. If A is different from B only by shearing, then

Z=2Z, but Zm#Zn (2.14)

Now all that remains to be done is to calculate .

Consider the following expression: "
Z(n) = 5 Zun(Z)" = X o-faPn (c-nFm)u; (2.16)
m m
which gives 0Z(n)[on] g = 3 — e~ FrFm B Fry, (2.17)
0Z(n)[0n|,,_ ~ .
and Z((;Z/= L) ! = E—ﬂBFmpm =—fgF, (2.18)
0Z/[0n|,,.
whence Fe —kTB(-ZT/[;’ﬁ). (2.19)

If Z(n) can be calculated then F' can be found using (2.1). Z(n) can be expressed in terms of
a generalized Gibbs formula as follows:

Z(n) = 3 Zp(Zn)" = S e aTn(ca ) (2.20)
=3 | e/aHrdQy, [ f e—faHs dﬁm]”. (2.21)

Or for integral values of r, Z(n) may be written

Z(n) = Zfe—ﬂm@) 4w f e~/HO 0O f f e~FRH® 4O (2.22)
m
Thus there are 7 + 1 systems
(0) 0)) @) 3) ) system
TaAVaA Ty Vy Tg vy Ty Vp -
unstrained &— strained — ey,

The formula as written is only valid for z a positive integer, but by analytically continuing the
result Z(n) = ¥ Zm(Zm)™ would be recovered for all n.
m

The advantage of the method is that the ‘topology conservation’ can be put in as a constraint
and thus absorbed under the integral sign

Z(n) = f f afjﬂ dQ@ exp ( - /fAHm)—él B H(«)) i[l S(m(0) —m(a)).  (2.23)

The « labels the system.
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322 R. T.DEAM AND S.F. EDWARDS

Thus Z(n) contains all the information required, Z(n = 0) = Z, and equation (1.19) gives F.
A simple way of looking at the properties of Z(z) is to expand Z(n)/Z out in powers of n:

~ 2 .

E(ZQ= L+n Eﬁm(—ﬂBFm)+g‘?§1’m(_ﬂBFm)2+"' (2.24)
= 1—nﬁBF+§ﬁ§<ﬁgl>+... (2.25)
= 1—nﬂBF+3§ﬁ§F§+.... (2.26)

F = —kT,InZ is the free energy of the original system A at fabrication without topology con-
servation. I is the free energy of the B systems with the topology set by A. F = F only when the
B systems are unstrained and at the same thermodynamic point as A. The reason for shear
properties being bestowed on the material by topological constraints can now be shown.
Assume F = F (A and B underidentical conditions). Then for any change A, AF = A(Y pm Fum),
whereas "

AF = %‘, P AFm. (2.27)
If A is infinitesimal ,}E[)m =1, A %:,pm = 0. (2.28)
But pm = e~ FFm=I), (2.29)
thus % BAFpm — %1] BAFm pr = 0, (2.30)
AF = AF = g}_‘, pmAFnm (A infinitesimal). (2.31)
Differentiate again A%F = E (A2Fmpm + AFm Apm) (2.32)
= A2f+ %‘, AFn(— pAF + BAFR) pm. (2.33)

Thus AF = AU+ by pm[(AFR)2— (AF)?].

Thus second order and higher derivatives at ¥ = F have additional contributions due to the
fixing in of the topology in our system and not the other. The part that gives the shear modulus
(and additional bulk modulus) is

% D (AFpt — (AF)?) # 0. (2.34)

The F, term in the expansion of Z(n)/Z can be used to give an indication of phase transitions at
critical points since [(F)2— (£,)?] is the second moment of the free energy distribution in the
solid. ((F)2— (F,)?)/(F)? will normally be of order 1/N (where N is the number of crosslinks and
is large). Thus ((F)2— (F,)?)/(F)?is negligible compared to 1, only at the gel point might this be
expected to become of order unity, in which case a critical phenomenon will have been
encountered.

3. MATHEMATICAL MODELS OF RUBBERS

The three models now about to be discussed will be reviewed only with reference to the assump-
tions inherent in each. The statistical mechanics will be done the same way for each using the
theory as developed in the first section. The mathematical framework will be the same for each
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THE THEORY OF RUBBER ELASTICITY 323

as well, that is using functional integrals to set up the models. In fact one model will be set up and
the assumptions of each theory put into the final integrals, thus it is hoped it will be easier to
compare the theories on an equivalent basis. Before setting up the mathematicsitis worth empha-
sizing that the ‘peculiar’ properties of rubber it is hoped to gain an understanding of, come from
the polymeric nature of the material, that is from the long range correlations of atoms in the
rubber (greater than 2 nm say). A full understanding of the bulk properties (compressibility, etc.)
will come from an understanding of liquid theory which is almost entirely due to short range
effects. Generally short range effects are completely unimportant but the motivation for this
study was brought about by a desire to understand why a rubber or gel (a dilute rubbery network)
does not collapse into a very dense little ball and to understand thisitis found that the short range
forces between molecules are very necessary to prevent this collapse. Another point worth bearing
in mind is that any chain model of a polymer, and indeed the real polymer itself under the Flory
0 conditions, will if the chain is long enough (and flexible) tend to obey Gaussian statistics for
distances along the chain further than a certain length say /. This [ can be thought of as being
a measurable constant for experimental systems or theoretically derivable for any particular
chain model used, e.g. freely hinged rods or bond rotation models (Flory 1969). The important
point being that provided the chain is flexible to allow changes in conformation the details of the
bonds will be unimportant for large correlation distances. It is these large distances which are
important in rubber elasticity.

With these ideas in mind the mathematics will now be set out in detail and the assumptions of
the theories due to (@) Flory & Wall (1951), (8) James & Guth (1943), (¢) the present model, will
be put into the model and their answers rederived and compared.

(a) Mathematical preliminaries

A phantom chain will be taken to be the definition as introduced by Flory, namely an infinitely
thin chain that can pass through itself and other chains. Let R be a position vector in space and
s be an arc length, 0 < s < L, along a phantom chain of length L. The function R(s) is then
a ‘phantom chain’. R(s) can now be used to set up the statistics of a chain. Let the probability
of finding a particular R(s) be denoted by P[R(s)]. If R(s) is to be a Gaussian chain then it is true
that 3 (L

P[R(s)] =./Vexp(—-§—l . [R(s)Pds). (3.1)

P is a functional of R(s), R(s) = 0R(s)/ds. This is because

A [ PIR(5 (1~ Ri)) 8(ra= R(s) 8R(5) = g ) exp = (3120) [0 =¥, s}
(3.2)

where f dR(s) stands for the functional integral over all functions R(s) (Feynman & Hibbs 1963).

This is the desired form of the two body distribution function. Thus, for example, a partition
function may be set up for a chain with an interaction potential between points on the chain R(s;)
and R(s,) of V(R(s;) — R(sy)). If Z is the partition function then

Z- faR(s)P[R(s)] exp(—%fjjj V(R(s;) = R(s,)) ds, dsz)

- f SR(s) exp ( - ;des—% f OL f OL V(R(s,) - R(sy)) ds, dsz) . (3.3)
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324 R. T.DEAM AND S.F. EDWARDS

For a single chain in a box of volume ¥ we can define the two body Green function

3 (L
Oryrissus) =4 [ SR exp(—g [ Reds) O(R(5) = ) SR -1, (3.0

Vbox 0
where the functional integral can be solved by writing down the equivalent ‘Hamiltonian’ and
thus Schrédinger equation in the spirit of Feynman. G(ry, ry; 51,5,) therefore satisfies Fick’s
Ao APOX 125 — 403 G(ry, 13 53,50 = 3= 12) Bsy ) (3.5)

The general development of the formulation for polymers is given by Edwards & Freed
(1969, 1970).

The diffusion equation in a box permits two classes of solution depending on the boundary
conditions: (1) cyclic boundary conditions; (2) density of polymer zero outside the box. The
solutions are

. 1 , . .
(1) Gr=3+(2/V3) X (Re ek He) (Re e R6D) exp (— 1] k|? |51 —5a]), (3.6)
(2) Gp=(2/ V%)Z%l (Im ¢ ®6e) (Im " 62) exp (= 1] k|* |5, = 5a), (3.7)

where k = (2r/V?}) (li +mj+nk) (note, at large s—s’ the small k eigenfunctions dominate the
expansion, i.e. when n2l|s; —s,|/V3 > 1). Pictorially

o ~ L/\-l

X~ FI1GURE 2

Ficure 1

The two body correlation function C(r, r’) can be calculated from G,:

L
C(r,r') = %fo Gy(r, v';5,5") dsds’, (3.8)
, L 3 i
thus C(r, 1) zW—F%—é—IT‘——“T_’P (3.9)

where the first term comes from ‘other chains’ (cyclic condition) and the second is due to the
extra correlation from monomers along the same chain. Itis of interest to note that the LI/V% < 1
condition corresponds to a polymer ‘gas’ of molecules which have internal degrees of freedom.
So the perfect gas law would be obeyed at very low densities independent of the boundary
conditions.

However, if LI/ V3> 1 then the ‘internal’ degrees of freedom have become ‘external’, the
volume of the box is now a limiting factor on the number of configurations the chain can take up.

Thus if it is desired to describe a long ‘phantom chain’in a box (LI/V% > 1), a choice between
G, (cyclic boundary conditions) and G, (zero density outside the walls) must be made. If a
phantom chain really did exist in nature then confining it to a box would produce a density
distribution as described by G, (i.e. bunched in the centre). Phantom chains are not realistic,
intra and inter chain forces for instance favour an even density distribution. These can be putin
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THE THEORY OF RUBBER ELASTICITY 325

for solutions of intermediate density quite easily, the main condition on the system being that the
1/r correlation effects are small compared with the effects of the mean density of the solutions,
(that is fluctuations in polymer density must be small). So for realistic chain models with
IL|V# > 1asin network problems, we are driven back to taking the G, solution with the additional
caution that the density fluctuations must be small compared with the mean density. Problems
involving the choice of G, (polymer density zero outside the wall) have been studied. This class
of problems arise in the situation where one end of a chain is fixed to a wall so the density at the
wall is fixed (Dolan & Edwards 1974, 1975), i.e.

Ficure 3

The solution to this problem (and for other boundary shapes) is obtained by introducing a small
length & in which the polymer is given ‘extra room’ in order to build up to its starting density
at the wall

! ) G, type solution

|
P |

! Po

Ficure 4

The reason for this is that the chain once it starts away from the wall can never cross it again
so configurations that cross the wall are not counted. This forces the maximum density of polymer
to be away from the wall, also the mathematics insists that the density at the wall is zero, but the
model must not be taken seriously at distances less than one step length (besides in nature the
wall is not a sharp infinite potential). A finite density p, at the wall can be obtained by starting
the polymer off at a fictitious wall ¢ further back (where ¢ & /). This might be thought of as the
effective infinite potential for the wall. Thus problems of this type have solutions of the type G,,
there is no even density part as in the G case (or in Fourier transform terms there is no £ = 0
mode for G,, there is for G}).

The mathematics of phantom chains in a box will now be used in setting up the general
partition function Z(z)f or a crosslinked phantom chain network.

(b) The phantom chain network

The model for the phantom chain network will be set up by considering a very long chain of
length L crosslinked at N points in a box of volume V. (Four chain segments eminate from one
crosslink point.) The difference between a very long chain crosslinked in this manner and 2N
separate chains linked together by N crosslinks to form a network is only in construction. Itis the
topology of the network which is important for the thermodynamic properties of the rubber
not the method of construction. The topology of the network is specified for the phantom chain
case by the position of the crosslinks along the arc length, e.g. §(R(S;) — R(S,)) §(R(S5) — R(S,))
specifies one crosslink at §; and §, another at 3 and §,.

28 Vol. 280. A.
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326 R. T.DEAM AND S.F. EDWARDS

Now the general partition function may be set up. First the z + 1 systems must be defined:

system label ) 6 ® ()]
thermodynamic
parameters ToV,, TVl dpder oo oo , TiVod A2,

where systems (1)—(n) have been strained by the extension ratio. A, in the x direction (A, = X,/X,),
where X,Y,Z, =V, similarly for A, and A,. Put one chain of length L in each box, the chains
will take the system labels, so that R@®(s) is the chain in the ath box. Each system will have the
same crosslinking topology. For one crosslink at s, and s, this would be put in by the constraint

I1 3(R®)(s,) — RW(sy)) (3.10)

a=0

so that for a phantom chain Z(z) for one crosslink is
L L n
Z(n) =N j dslf dszf SR(")(x)f SR("‘)(s)f... f SR™(s) TI 6(R@(sy) — R@)(s,))
0 0 14 2 W ZW W a=0

n L
XCXP(_%OEO . R("‘)zds). (3.11)

L I
The advantage of introducing z + 1 systems is now seen because the f ds, f ds, can be done
0 0

first. Changing the order of integration we have

Zn) = N f f A0, - f I1 3R f ds, f ds2H8(R(°‘)(s) ReX(s,))

xexp(——-2—l“§0 . R(de). (3.12)

Thus for N crosslinks Z(zn) becomes

Z@) = N f f A, . f HSR(“)(J)[ f ds, f dsy8(R(s,) — R¥(s, ))]N

><exp(—2—la§0 , R(“)ads). (3.13)

This is the general partition function (namely equation 2.22) for a phantom chain network. This
formulation of the problem will now be solved with the James & Guth, Flory & Wall and also
the present assumptions. Before starting it is more convenient to rewrite the crosslinking con-
straint by a pole integration

Z@) = N 4 f f A, ... [ 11 3R@()

N-rl a=0

n 3 ML .
XCXP( fo T 8(R@(s,) - R¢ ’(’2>)d’1d’2‘a§0‘27f0 R()ds). (3.14)

0 a=0
A lower bound will now be found for Z(n). (Therefore an upper bound on F.)
Consider e @ > 14 x—(x),
therefore {e¥ye~@) > (15,
thus (e®) > e®, (3.15)
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So in this approximation we may write

Z(n) > i‘fvﬁ'exp (/I/< f ds, f ds, H S(R@(s;) — R<a>(s2))>)
< f ds, f ds2a£[06 R@(s)) R(“>(s2))>N. (3.16)

L L n
Therefore only < f ds, f ds, IT 6(R@(s)) — R‘“)(sg))> has to be evaluated, although a direct
0 0

a=0

< [ f OL dslfOL dsy aIZIO O(R@(sy) — R@(s,) )]N> (3.17)

is in principle possible. Now what is meant by the averaging { ) must be décided, and this is

evaluation of

where the difference between the James & Guth and the Flory theory comes.
The Green function for the system is easily solved, since the z+ 1 systems transform into a
problem of a random walk in 3(z + 1) dimensions

G(R(s)}, (RO 53 59) = [ 1T Wexp(_;:l $ e ds)
a= a=0

x TI 8(R@(s;) — 15) (R(sy) — 1), (3.18)

a=0

where {R@(s;)} is a vector in 3(n + 1) dimensions.

This is the solution of Fick’s equation in a box of volume V»+1(A,A,A,)"in 3(n + 1) dimensions.
As discussed previously, there are two types of solution appropriate, an even density (cyclic
boundary conditions) and polymers with a fixed end at a wall.

(¢) The Flory assumption

Flory assumed that the crosslinks are fixed in space and are randomly distributed over the
volume of the rubber. This is an even density assumption appropriate to cyclic boundary condi-
tions with solutions of type G,.

L n
Evaluation of <,uf ds, d52 1T 8(R9(s,) — R(“)(sz))> is simply
a=0

P f d¥n+DR d3m+DR, d¥ntDR, d3m+DR, G0, 1] Gy[1, 2] G2, L] 8(12), (3.19)

or diagrammatically

Vi

where O=======m0 represents G and

represents ¢
O\\ /0 epre

Ficure 5
28-2
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G is given by

g #n+1)
Gl[{R(a)(sl)}’ {R("‘)(sz)}; S1 52] = Vn+1(/\1 /\ A )+( : ) '

% exp ( 31 “%0 |R<a>(s|131 iz:) |2) ’ (5.20)

where (;%)3 Y (Re el R) (Re el Risad) g=§ Ukl? Isy—sal (3.21)
has been replaced by the approximation

(e o (-5 @2

= J- Ld5 f Lds f f f d3+DR d3mt+DR d3m+DR [ 1 + 8 )%("H)
o Jo Z 0 1 LIV, 2,2,)" " \2rl]s; — s,

1 +( 3 )%(n+1>exp(_§3_ % |R("‘)(so)——R(°‘>(51)[2)]

Ay A" \27lsy 14=0 $1

1 3 $(nt1) 3 2 |R@(s;) — R@(s,)|2
x[V"Jrl(/\x)ty/\z)"—'-(2nl|L——s2|) e"p("z‘zgo = )] (8:23)

In order to evaluate these integrals the following transformation must be made
RP(s) = A, RO(s) +9@(s) (e # 0,1 = x,9,2), (3.24)
where R@®(S) is split up into the affine deformation plus the fluctuations about this deformation

(the 5(s)’s). Thus

L L n
<ﬂf dﬁf dsy TT 8(R@(s;) — R@(sy))
0 0 a=0

a5, [d ! 3 V"Nu A2 (3.2
—'ufo Slfo Sl(Vn+1(/\$/ly/\z)n+(2TCZ|51'—32|) )( +1;I(1+n 282, (3.25)

A minimum loop size is introduced, /.

1
x 2TV W) )n[VnH(,\

Therefore
R I @ R@ L2 2\ —472
Cfy J et TLaRO0) = ROt = | g L+ I+ 7, (220
3n 1 fn+n [ ‘
where C, = (2 + )(27:1) —_lf?“%)' (3.27)

The resulting exp (A~ (f f 7d (R} — R3))) in the partition function should now be renormalized
by exp (—puL2[V"+1(A, A, A,)™) since this alone would give the perfect gas answer.
Thus the general partition function is

Z(0) > § i exp ULV A, A)" + Cl [+ T (LA 412 = V02, A)) (3.28)

= exp (NIn[(1+ C, V" (2,4, A,)"/L?) (1 + I1(1 +223)74)%— 1] 4+ Nln (L3 V(A A, A,)™),
' (3.29)
which by formula (2.1) gives F < Nk T[ZA3-InA] (8.30)
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(d) The James & Guth assumption

James & Guth assume that there are two types of crosslink, one type fixed at the edges of the
rubber the other free to move inside the rubber. The appropriate solution here is a G, type
because polymer is fixed at the wall of the box. The calculation is the same as before except
without the 1/V7+1(A,A,A,)" terms from the mean density term. Thus

< f TT 8(R@(s,) — R®(sy)) ds1d52> = pLC, TT (1+nA9), (3.31)

0 =0
In Fourier terms Flory includes a £ = 0 mode whereas James & Guth do not. Thus the James

& Guth result is F< Nk TS . (3.32)

The logarithmic term is no longer present because the even density assumption does not apply.
James & Guth assume the system is held in equilibrium at A, = A, = A, = 1, by ‘internal
pressure’, that is short range repulsive forces. This was unnecessary in Flory’s result.

In both the above treatments it is interesting to calculate {(7*> and {(RO(S) — RO(S))2), If
this is done (see appendix 1) it is found:

(q@*) = ILJ6N in both cases, (3.33)
((RP —RP)2y = [L/6N for James & Guth (3.34)
and ((R®— R®)2y — 1V3 +[L[6N for Flory (3.35)

(where the }V# dominates so that the density is uniform).

Thus the crosslinks fluctuate about a mean position (given by the affine deformation) by a
standard deviation of /L/6N. This contradicts Flory’s assumption of crosslinks fixed in space.
James & Guth’sidea is to fix some crosslinks at the edges and to allow the rest to fluctuate and
unless a constraint of constant density is used, this will give rise to a density distribution with
the polymer all piled up at the centre of the box.

mt
(&)

L e 4 L ——

FIGURE 6

(e) The present model

This model incorporates the uniform density assumption but allows the crosslinks to fluctuate
about their affinely deformed positions. The starting point is again (3.14)

n L '
Z(n) =§ — exp( f f ds, ds, H O (R — R(z"‘))—-g—l ZO , R("‘)zds) (3.36)

as in the previous analysis Z(z) is going to be approximated by

Z(n) > d";,}fl'exp (,LL<J. f ds, ds, I'[ O(RP — ("‘))>) (3.37)

But this time a more realistic Green function will be used to do the averaging.
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330 R. T.DEAM AND S. F. EDWARDS

The idea can be outlined as follows. It is required to calculate
L
Z- f exp( V[R] - f R ds) SR(s), (3.38)
0

L

ie. Z = (" Ry, ~where G, = fexp ( —%f R? ds) O(Ry—ry) 8(Ry—ry) 3R(s). (8.39)
0

This has been approximated by

Z > o f G,. (3.40)

Now define G, = fexp (U(R) —2% - R? ds) S(Ry—r,) 0(Ry—13) SR(s), (3.41)
0

ie. Z= fexp( Y+ V[R]-U[R] - 2lf R? ds) (3.42)

thus Z =V > f G,) e"=Deu, (3.43)

where an upper bound is obtained for the free energy F, as before. If, however, G, is a better
approximation to reality an upper bound closer to the free energy will result. Also G,, can be
varied so as to give the lowest free energy, thus a variational procedure will yield a closer upper
bound on the free energy. U(R) may be thought of as a trial potential for which a best fit to V(R)
is found. V[R] for the case considered is

L (L n
pf [ dsidsy T 0(Rs) - RO(e); (3.44)
0Jo =0
a good choice for U in this case is
. n L ‘
UR =X X w%f 7 (s)ds (I =x,9,2), (3.45)
Ta=1 JOo
where RP(s) = A, RO(s) +9(s); o« # 0 as before. (3.46)

The reason for this is that crosslinks must be localized about their affinely deformed position. An
harmonic well will do this, w; will be a variational parameter. The Green function is then the
solution to

G = f f I1 3R®(s exp(——z w? Z 77("‘)” lj Re? ds) (3.47)
T ' a= 0

a=0

% is now the product of n+1 Green functions, for turning the problem into the differentia’
equation form, n+ 1 separable differential equations are obtained

(0/05 = V3 — B S 037} GO = 5( —71§) 8(sy—s3) (3.48)

with Fick’s equation for the R system.
However, before proceeding it is useful to introduce a transformation 7, that has the following

properties
X TLRP(s) = XP(s) (1= x9,2), (3.49)
a=0
the X®@(s)’s being such that
5 X06) = £ Cn( (3.50)
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(a linear combination of #®(s)’s only) ; also

n

S

Y XP(s) = ¥ RYM(s),
£=0 a=0
so that 3 XP(s) = 3 RE(s), (3.51)
=0 a=0
S XP(s) = 3 O (s)
f=1 a=1
and £l 3(R(s) ~ R9(s)) = T 5(X0(s) - X¥0(y). (3.52)
o=0

T is therefore merely a rotation in the z +- 1 system space. T has the properties of a rotation matrix,
detT = 1and T§ = [ T#]~". See appendix 2 for an example of T. Special significance is associated
with the ‘centre of mass’ coordinate, which will be X{(S):

ROG) 2 ARES)

XO6) = dr et Z T e (3:53)

will ensure detT = 1.)

1
(The (Tt

The other X{?(s) may be chosen quite arbitrarily provided the rotation condition on T is met
and it is found then that X?(s) for B # 0 is just a linear combination of the #@’s. Thus

n n L n L ,
G = | II 3X¥(s) exp(——~l—}] wi Y| XP(s) ds+—?: > | Xxer ds) (3.54)
£=0 6% “g=1Jo 20520) 0
so that G = ﬁ G#, (8.55)
=0
where {0/0s — 3IVk 0} GO = §( XV — XP) 8(s, — 55)- (3.56)

The system is in a box of volume V IT (1 +7A%)# and

{0/0s — Vi — Z %lw%X‘iﬂ)} GO = 8(X‘1") - XP) (s, — S3) (3.57)
for # # 0. Therefore
’ 1 3 3 3 |XP-XP|2
© — A s St M
O =yiasat (27tl|sl-s2|) CXP( G/ T— ) (3.58)

A

W,
(B) = L
G 1} (27r sinh 3w, [s; — 55]

L (XE* + XP*) cosh Haw,(s, — s;) — 2XP XD
) (,Xp(—%wil: sinh %lwilsl_szl ]), (359)

which, when lo;|s; —s,| is large, is dominated by the lowest eigenfunction

G x T (wyfm) exp ( — 3w (X" (51) + XP(53)) — Bl s, = 5 (3.60)
Thus f glldx = VI (1 +n/\%)i(£)1}nexp(—-%nlw,-l4). (3.61)

From this Green function we obtain (V- U)

L L n n L
F-0y=u s "as T 0RO - RO -5 0t 3 [Crer9)as), (302
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332 R.T.DEAM AND S.F. EDWARDS

which was transformed to

V_U s, [ ds, T1 8(XO(5,) — X 2 & [F xom
=0y =(p], ds [, dss T12000(s) - @) -Hzat 3 [ 2 ar). (@)

Now

< f 01 ds, ;ds2ﬂl7i[08(X‘ﬂ)(sl) -X<ﬂ>(s2))> -1 (5‘2-’;)%"< f OL ds, ds,8(XO(s,) —X(°)(s2))>, (3.64)

the lowest eigenfunction contribution being completely dominant for the £ # 0 systems, leads to

< f ds, f ds,8(XO(s,) — X(°>(s2> T 1+W (21:1) f s (89

where a minimum loop size has been introduced to mimic chain stiffness over short arc lengths.

Th
" < f Ldsl f ds, H«SX‘*” D) - X<")(s2))\> H(%)én[vﬁff—iﬁgﬁg(ziﬂ)%] (8.66)

(because 1/L* < 1[I}, 1/L} has been neglected), and

<l ﬂ 3 %lszW)“’(S) ds>—n f dsdl X o} f X2e-oiXi(njw,)t = %‘,Tlgnlei. (3;67)

Thus the general partition function is given by (3.4):

o> §ifione (o[ 32) | [ 26 ] 2 ) oo

(1) e 5 ool epte). oo

Now applying (2.1) to find F gives

1 N IL
Fg kT[2ﬁ—+—ﬁ > 5_:1 —+212 J (8.70)
1( 38\ L
where C = Ezg (ET—C-Z) y P = —‘V. (3.71)
Since w appears in Z only in as much as it appears in F we can find its value by making F
stationary, i
Gl JJ N1 L
o, = =0=k7 [————l—l—z] (3.72)
we find w; = 6N/IL. (3.73)
Thus the A; dependent terms are
N
F<kT= AR 3.74
Ty / e (3.74)

The 1/(1+¢/p) is the wasted loops correction factor, also the answer is a factor of } smaller than
the classical theories. The short range forces are expected to give the required free energy correc-
tion to keep the network from collapsing; thus A,A,A, = 1, the incompressibility condition,
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should be used with this formula. The fact that w, is independent of the strain condition means
that the — ¥ $NIn (v,/27) term does not contribute to the elastic free energy. The important
@

difference between this and the Flory model is that the localization of the crosslinks has been
allowed (standard deviation in their position is (¥ w;)~%) without fixing them to their affine
7

deformation position. It is this localization as measured by w which decides whether the network
is a rubber or not. Obviously if @ ~ V-% then the localization due to crosslinking is the same as
that of confinement to the volume of the rubber and the process of gelling would have to be dealt
with which is too complicated for a ‘mean field theory’ such as this.

Itis easy to demonstrate how vital the short range repulsive forces are to the equilibrium of the
system in the following way. So far the calculations done have been for Z(n) > e(U=">. An attempt
can be made to calculate {¢V~"); over the X©@ system. To do this first introduce collective
variables in the X© system:

L

Pr =f elk X(s) g5, (3.75)
0

thus GO ~ A e~pur—illrrr—k)) for k £ 0 (3.76)

1 L L .
where  (puposd = i), 4o, do [ exp k. (X0) - X))
3\ 3 | X0 —XP1N v gxo
x(znllsl_szl) exp(-—EZ =N )Xm dX©, (3.77)
, (E (P exp (B R ]s1—55]) 6L
so that (oupid _L dslfo o T = APV I (o) (3.78)

L2

and GO = 8kaH CEEIUL

for k=0, (3.79)

d,uN! L L n n L
and Z(n) =<§Wexp (,uf dslf dsy TI 6(XP - X +HT 02 3 X(ﬂ)2d3)> . (3.80)
0 0 p=0 T p=1Jo

Gy

Doing the average over the X systems for £ # 0 as before (that is, (V' — Uy g0), leaves

] L L
Z(n) > §%<exp (,uf dslf ds, 6(XP - X)) A(w) —n %, T‘glei)>, (3.81)
0 0 B

where A(w) =11 (%—c)%n (3.82)

On writing this out in collective variables
duN!
Z(n) 2 “ T P (nd(®)<popo)) N I dprdp_ exp (ud(w) prp_s.— prP+/{Prp2>- (3.83)

= § ot exp (1) Kpopoy+ S o) [ [ [l dpud-

x exp (4A(®) PP~ PrL-1l{PrP-1) — LA (W) {Pr.L_1))- (3.84)

29 Vol, 280. A.
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The first term outside the functional integral is just the result previously calculated. The
S {prp—iy A(w) term corresponds to the closed loop correction (i.e. wasted crosslinks). The
k

elasticity in the problem has in this theory come entirely from the £ = 0 term! So the factor

exp (= Sud(0) (pup-) A [ [ T dpdp_exp[(ud(@) = 11pup-) o] (389

should improve this calculation still further. The same is true for the Flory and James & Guth
models. The term in the exponent is positive for small £ which is where the physics of the problem
lies. The exponent is

{,uA(w) _g‘; VII(t +n)l%)é}. (3.86)

This is only an apparent singularity because on doing the pole integration one finds the functional
integral becomes

exp (=13 #5lLo) A [[ T dpdo AWV IS oup- exp (=prp-allpups). (357

This is in fact equal to Z(n) because the boundary conditions should be applied properly (i.e.
there are no short range forces in the problem, thus a non uniform density distribution will arise
so that {pop,y drops out because there is no longer the cyclic boundary condition). This will give
a p(x) like that of figures 2 and 6. This is due entirely to the ‘phantom’ nature of the chains. It
would then be unnecessary to use the incompressibility condition, (A,A,2,) = 1. The system will
find its own equilibrium.

However, since short range forces do exist in a rubber and give rise to the uniform density of
polymer, these can be put into this formalism giving rise to the £ = 0 mode and also making the
exponent in the functional integral negative. Roughly speaking an excluded volume potential
will add a term — %} V.prp i to the exponential so the functional integral now becomes

20 > § s exp (1 3 1200 A [ [ T dpdp-sexp [(eA(©) = Vo= 1Kpu ) pupil-
(3.88)

Aslong as u4(w) < ¥, the fluctuation terms (i.e. £ # 0) are damped away and the cyclic boundary
condition comes back (i.e. £ = 0 term) giving the free energy F as before with the liquid like free
energy just tacked on the end. (This corresponds to the A,A, A, = 1 condition assumed before.)

As pd(w) — V goes through zero to become positive apparently some sort of transition occurs
quite catastrophically. When u4(w) — V = 0 the system is delicately balanced on the edge of the
transition. The transition can be drawn as in figure 1 for 4 — V negative and figure 2 for 4 -V
positive.

The polymer goes from an even density to a clump of size ~ (/L/6N)?in volume. This clearly
cannot be the case for a polymer melt, so some way of insuring a maximum density of polymer
must be put into the problem, only then will the answer be realistic.

This transition is like the syneresis point for moderately densely crosslinked rubbers in good
solvents. Adding more crosslinks increases # (which can be thought of as a chemical potential)
until #4 — Vis positive. Thus the transition is really between two uniform density states. For more
lightly crosslinked systems it may be a question of gelation, but this really depends on the localiza-
tion of the chains. For large excluded volume forces (i.e. good solvents) and moderate densities
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of polymer the formalism should provide a reasonable approximation to reality because the
fluctuations in the system will be small, e.g. if #A(w) — V is negative, such as must be the case in
swelling experiments. It is this case that will now be solved.

4. EXCLUDED VOLUME IN RUBBER

The excluded volume will now be put into the model rigorously and then solved in the spirit of
the last section. The inclusion of the intra-chain forces through some potential V(R(S,) — R(S,))
will be modified by a solvent in the rubber and also by ‘screening’ of other parts of the polymer
chains in the network. In short a theory of liquids is needed to solve this problem. However,
polymer solutions at intermediate densities (that is not so low that there are large fluctuations in
density and not so high that the second virial coefficient is no longer adequate) can become
tractable when a simple form of ‘pseudo-potential’ is used. The basic idea is that the polymer
density is comparable to that of a gas whereas the liquid it is dissolved in just serves to modify the
interactions between chains. The excluded volume v of any system is defined by

» =jd.QaEb[exp(—U(ra—rb)/kT)—1], (4.1)

which is just the second virial coefficient. If the system is at sufficiently low density then the free
energy may be expressed in terms of this parameter quite adequately. The ‘excluded volume’
parameter can then be put into the partition function as an effective potential

V0 (R(sy) — R(s3)). (4.2)
For a polymer solution this leads to a free energy dependence on v given by
F=—kT[mln V+me—ipvmL + (V/)24w) (v12p[])3], (4.3)

where m is the number of polymer chains, V' the volume, mL the total chain length in solution
and p the density of polymer (see Edwards 1966).

The term which is linear in the polymer density is just that which would be expected from a gas.
The term which has the three halves power is specific to the chainlike nature of the polymer. It is
due to interactions which may be drawn like this:

A~

Ficure 7

In a network this type of interaction will be modified by the presence of crosslinks, again the
same sort of interaction will be present but this would be expected to be enhanced by interactions

like:
2

crosslink

Ficure 8
20-2
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Not only then will there be excluded volume forces holding the networks apart which do no¢
depend on crosslinking (as in the Flory-Huggins theory; see, for example, Yamakawa 1971;
Flory 1942) but also terms depending on the crosslinking. In other words the free energy of the
system is not obtained just by adding the free energy of the network to the free energy of a solution
at the same concentration; there is also a cross term

Fgel # Fnetwork +Fsoluti0n' (4°4)

The way these ‘mixing’ interactions add to the free energy could modify both skear and bulk
properties.

With these thoughts in mind the general partition function will now be written down. It is the
same as equation (3.2) modified by the excluded volume in each of the (z+ 1) systems

Nidu ( » L L  n
Z(n) = § xer [ T aR) exp (1 [ sy [y T 8(RO(s) - RO(59) = S A, HOR), (85

where H@® is the Hamiltonian of the ath system. Whereas before g, H® was given by

3" Rer(s) d 4.6
3/, R ds (4.0
now the ath system has excluded volume
L L L
B H® = 231 f RO s+ 3o f ds, f ds, 8(R@(s,) — R@(sy)). (4.7)
0 2 0

Note, »© is the excluded volume of the system at fabrication, all the other »® are equal and are
the excluded volume of the strained rubber.
Therefore

" 1 L L n
Z(n) =§r%’%‘% [exols f ds " ds, 11 6(RE - RE)
0 0 =0

-3 [(3/21) foLR(“)zds+%v(“) f OLdsl f :’dsza(Rg“)—ng)]}allszz(«)(s). (4.8)

Using the same transformation on the {R®(s)} systems to go to the {X%#)(s)} coordinates one finds

n L L
that the X %v(“)f dslf ds, 0 (R — R{) does not go to anything simple,
0 0

a=0

L L T L L n n
f ds, f ds, 3 (309 8(R® — RP) —> f ds, f ds, 3 %v(‘”&( S Tyxp _Xgﬂ>)). (4.9)
0 0 a=0 0 0 a=0 a=0
However, it is still possible to use the same procedure as in the previous section. The harmonic
well potential is introduced as before and (V' — U) in this case is

n

L L n L L
7-0) = uf s [, f1 0000 -3) = 3 100 [ "as [ dna (T30 - %)

a=0

n L
—% % Zw%fo X ds, (4.10)

=11

which is the same as before with excluded volume added in. Averaging this over the {X®(s)}
systems except for the X©(s) coordinate can be done for all the terms, except the excluded
volume term, as before, giving

L L
V= Dexcaptgo = 1 [ 51 sz ) 20X - X9)

n L L
+< g}ofo dslfo ds, §v@ & (R — Réa))> —n %} llo;, (4.11)
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THE THEORY OF RUBBER ELASTICITY 337
h Aw) = (&) 4.12
where (w) = I;[ (2—n) . (4.12)

L L
The < % %v‘“)f d51f ds, & (R -- R(z"‘))> average can be done by rewriting the delta function as
a=0 0 0

a Fourier transform

n L L
Dpeo={ 3 T3 f ds, j dsexp (ik<a>-(R§“)—R(z“)))>
=0

=0 k(a)
L L
=f dslf ds,d 3 X $v9exp (1k(a) T (X0 - X0 + Z k. }(X‘{”—XQ"’))> (4.13)
0 0 [ 7
taking the lowest eigenfunction approximation for the G% Green function (3.7)

1 (%)%exp{ — §0,(XP (1) + X (52)) ( — 150, |51 — 52[)} (4.14)

2

and completing the square. This approximation will be valid at large s, —s, (therefore small k).

L
<v>ﬂ9é0 =J.0 dsy dszz 2, exp (lk(a) T3(XP - XP) — E E (k(a)le;ilz)/wi)' (4.15)

o l(ay
Notice that in this approximatlon the average of the # # 0 systems is independent of s; — s,, thus

allowing the introduction of collective variables for the X© system. It is a property of the
transformation that

n
> | THPP =1, (4.16)
A=0
n
R | T5|* = 1— | Tg% (4.17)
where | T2 = (14nA3)7Y, | Tgi|2 = (1+nA%)~1A% (4.18)
Introducing collective variables for the centre of mass system X,
L .
Pr =f elk X0 d¢ (4.19)
0
and transforming TS ki = ke TE Ak = M (4.20)

the excluded volume comes in its final form to be

LA | ks (1— T3
(Vg0 = Z E B) H TM7e e Phg Pk, ©XP ( - %}—i—)—;— (—T-o"_i;—)) (4.21)

2
= S IT (14} exp ( z%m) PuP
k 0

by (LD Bog (1 (1= 1))
+ a2=:1 kZa L@ ];[ XA, exp| — ? —i)—;— —x Pray Pk (4.22)
Equation (4.22) will be denoted by:

<v>ﬂ¢0 - Z v (k(d)) pk(a)p—-k(a> (4‘23)

k(ay

The calculation as outlined by (3.84) can now be attempted:

du ! n n
2(n) = § i exp (= 2 w(k = 0)) Coupry+ 3 (4u= 3 v8)) <oupsy =15 S5l 7
(4.24)
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338 R.T.DEAM AND S.F. EDWARDS

where % is the functional integral given by
F =N j f I1 L dpidp_yexp (= (k) — Ap) (prp = PP -)) = PP -1l <PrP—i)>  (4.25)

W= f f I Tl exp (~puosloup)s 4 = A(w) = TT (0 /7). (4.26)

The contribution to Z(n) outside the functional integral is given by the same answer as before
plus excluded volume terms:

exp ((4r= 3 v9(0)) o)) + 3 (4= E 090)) (oupd

=exp(Aﬂ[—,7fﬁ—(—-f~fF—;,7%—)—%+Lc] §v<a>(o>———(§-};25— S S00(k) (up o)), (427

a=0
[

h c=i(L)L
where =315 i

and /, = minimum loop size. By using (3.22) for V@(k), the £ = 0 term gives a contribution

(0) ]2
(v o, WAL ) (4.28)

“\eravaa)

(which provides the necessary stability condition). The sum over the £ # 0 modes is the self
energy of the chain (me for the single system formula, which is the excluded volume equivalent
of closed loops on the same chain). This has to be cut off in a similar way to the closed loop
calculation due to chain flexibility, the cut off length being smaller than (lw)~, the full harmonic
Green function should be used to average the excluded volume term over the £ # 0 systems.

Therefore, by using (3.59) :LV“, Y V9 (k) {ppp_sy = 7y say, the self energy is really
a=0 k

2 2
f d51f ds fd*kH 1+n/\) [(")exp( ),]Z) nA2 tanh }o;, |sl—s2|)

nv@)
A A,A

Y E

2(1+(n—1)A3%)

+ exp( Z——————/—\z——ztanh Ho, |51—52|)] exp (—|k2ls—s]). 4.29)

On doing the £ integration one obtains

2 __L
7:‘]. d51f ds, 1 J—j——’—z—/}—)—[v(‘”ﬂia/}’tanh Yoy sy —s,| + l|sl—52[}

(2 (3
181—84l

) 14 (n—1)A3 -
+Ax/\y/\z i{ (/\%wi) tanh%lw”sl—sz[+%l[s1-yz|} ] (4.30)

The integral is dominated by the behaviour at small |s, — s,| if the cut off length is smaller than
the localization (which is the case for a rubber). Therefore the self energy becomes

1+nA3 @ 14003
gg(_;)[«»n(um\z) ~be, + A”; 5 n[ o ’] cl], (4.31)

x "yt v
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h BN (4.32)
where 0 =557 3 (<1, .

toll, < 1. (4.33)

So finally v = 3OLC, + $m@LC,. (4.34)

This is just the form for the self energy that would be expected (i.e. independent of V and A,).
So for the non-functional part of Z(z) in (4.2) we obtain

N'dp L2
20 > e (4 [y 16

0 J2 @ ]2
- % %0, -92—57— 2”%7{;7;" %-I: (v(°)+nv(°‘>)) F, (4.35)

where & is given by (4.26).
The evaluation of &, the functional integral, will now be made. The existence of & will
determine under what conditions the model is valid. If # does not exist then syneresis has

occurred, as discussed in the previous chapter. Combining equations (4.22) and (4.26) we have

F = [ [ TL30udpuexp (= V{8) s = (b _al<pup-10) + Atpup s+ TV (R) = A4l Cpupd),

and on doing the p,, integrals, (4.36)
- B 3 6L ) _ 3 6L
¥ = CXP( P2 [111(1 VO = A gy o) ~ (VW - M) Err ) )
where 1 1 (4.37)
v . k3 (@ K3 (14 (n—1)A3
= — 2) % — 3 2p)2 [P 2)3 _ T/
V(k) 3 I;[(l +nA%) exp( }i_,win)l@)-l-‘?/\way/\z];[(1+n)t1)%exp( > z( Az ))
asin (4.22). (4.38)
The condition for the existence of & being that V(k) —Ax > 0 for all k. Thus
A \C) Ap
TN, T T +nX0)l (4.39)
and if the 4 integration is done by steepest descents then it is found that
NV

where y, is the saddle point:

Therefore if the 4 integration can be done with the contour going through the saddle point
such that V'—Apu > 0, then the even density boundary conditions hold. If the contour has to be
closed so as not to include s, in order to keep v — Au positive, then the non-even density boundary
conditions prevail.
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340 ‘ R.T.DEAM AND S.F. EDWARDS
Thus for this model, V(k)—Apy > 0; (4.41)
vOL K2 oo L K (14 (n—1)A%
therefore 7 €XP ( ;;in/\i) +mexp ( - %32); (———/\%———)) > 0, (4.42)
. 9L N
ie. T for n=0, (4.43a)
@ 1-22
— 20 2y A
and v Z/\ /\z/\y/\z(l 21]( pE )) > 0, (4.43b)
i PO 4.44
1.€. AxA”Az ) ( ¢ )
to order n.

The £ integral in (4.5) is only valid up to £ ~ w# because, as in the self-energy calculation, the
lowest eigenfunction approximation is not good enough when £ > w# and a more elaborate theory
would be needed. The lowest eigenfunction approximation has the advantage of allowing the
problem to be expressed in collective variables for the X© system. The integral can now be done
by approximating the e~** terms by 1, since convergence is ensured in any case for large £.
The main contribution coming from the physically interesting small £ modes. Now

ot
f d3k{In[1 + a/k?] — a[k?} ~ —almat (3} <a < 1) (4.45)
0
provided w/a > 1.
Thus doing the £ integral in (4.5) we find

ny(@ Ap 12L\%
F = exp( H (1+nA%)} V[2V ST, VH (1_:7”\2)%] (—) ) (4.46)

lo T (1+nA2)}

provided G0~ (AT (L7 o2 ~ A

ie. $lw+ N[L > p3v©® at n=0. (4.48)

This term gives the desired mixing of excluded volume and crosslinking. Putting all this back
into the formula for Z(n), (4.35), we find

dpN! L nilL ) 4 7/
Z(n) > %/‘N_H exp{A,u[VH (1+n/\%)é+d']_ﬁ§wi_(v +nv@)e, L (4.49)
02 L2 @ —Ap & /120\%
- 3 - ==
EYARET 7 W Tom VIL(1+nA) [V 2w V1_1(1+nag)%] ( ] )} (4.50)

and since the model is only valid for

U(O) 1)(05) Aluo
EIARTZ29W) VII(1+n/\2)

z YR

(4.51)

then we may expand the exponent in powers of

Apy
VII (1+nA%)}
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- duN! L2 IL
giving Z(n) 2 fﬁ;ﬁv 7 €XP {A,u [ﬁm + CL] - nT2_ S w;— (VO 1@ ¢, L

i

© @ 1% 02 @2
ocA,u[v v ] (12L) vOL2 @] +0(2)

TTee [TIVAALE\T) T T e
VAL @ ]%(12L)%}

> DY R C N Y et
+ 15 VIT (14nA) [ arwwill e (4.52)

Dropping powers of # greater than the first and then doing the contour integration we find
L2 o [VOL m©@L 13/12\% & nlL
Nl &= S L R L et M.
Zn) 2 4 [V]] Tt T ¢l 127:[ v +V/\x/\y/1j ( 1) L] e"p( 12 2‘")

vOL2 @) [2
% CXP{“ 2V T3V,

a VOL @l 1E/12\%
—(v<°)+nv<°‘))LCI+EtVIiI(1+nA%)'%[ + ] (—) }

RRZWWH R
Lo (4.53)
o ) . 2(% nv @l 12)
where o V];]‘ (1+nA%)} [ 7 +_—_—_VAwAyAz i (4.54)
w}
comes from f "k [In (14 V) pup i) = V(R (b)) (4.55)

Here again a similar argument as for the self-energy calculation should apply. The term is really
In{e¥) and as such would be expected to give

VA A A, (v@912p\}
24m A AL

YR

|4
§ZE<U@H2W)%+

(4.56)

i.e. just the same answer as from n 4 1 uncrosslinked systems. Thus

12 a TWOL e, 13 /12\% 1V nlL
NV RS B — J— —_— .
Zm) 2 A [VH(1+nA%>%+CL o 7 ) (7) 1 e~z

Y

VOL  m@L2 V (v9120\F aVA A, 2, (v@12p\}
—— i (O} (o) —_— - Y 2z
X"XP{ 57 IV, )LCI+24n( ] ) % (/\ x A) } (4.57)

xty e Y2

Therefore on looking for terms of order # as in formula (2.19) we find

N e, @ {12\ 0 1
P8 s 3 2 (1) @i
IL N v@pL, @ VAAX [ v@12p \3
RETR I Dl 7 W W W sy (mx,\”,\z) : (4.68)

The localization has been unaffected by the excluded volume, w; = 6 NJIL as before.

The closed loop correction to the crosslinks has been modified by the excluded volume at
fabrication so that less closed loops form as would be expected. The other N-dependent term is
the ‘mixing’ term expected and may be thought of as the modification to the heat of mixing by
the crosslinks. The other terms are just the contribution from an uncrosslinked solution.

The formalism used (collective variables) with the inherent approximations means that the
formula derived is valid only when the density of polymer is low enough so that a second virial
coefficient (or excluded volume parameter) provides a good description of the system. The
density also must be high enough for gel formation above the syneresis point (i.e. there must be
no separation of the gel from the solvent during formation of the network) (v@L/2V > N/L).

30 Vol. 280. A.
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342 R. T.DEAM AND S. F.EDWARDS

(The system is homogeneous.) If the excluded volume effect is very large then presumably the
localization of chains is effected, the chains becoming locked into position to form a glass.
Restriction to the excluded volume as given by (4.48) sees that the localization is not affected
by the excluded volume. The correction to the ‘heat of mixing’ is linear in N (the number of
crosslinks) because the expansion in # was only taken to first order in (4.52). Near the syneresis
point higher ordered terms in ¢ will be more important thus terms of higher order in N could be
expected near syneresis.

Thus the excluded volume has contributed both to the shear properties by cutting down the
wasted loops at the crosslinking process and the bulk properties by modifying the ‘heat of
mixing’. The free energy of the network is then

F< N a (12\% @ 1 #1
T = ol 2o 15 |2 B ) )i, A A] (- =3(zm) ﬁ)
(4.59)

to which the usual solution term is added. The above formula being valid in the lightly cross-

linked regime above the syneresis point and at low densities.

5. ENTANGLEMENTS IN RUBBER (Edwards 1967, 1968)

In the models considered so far the phantom nature of the chains has been a major defect.
Polymer chains cannot pass through one another. At low densities this will be a small perturba-
tion on the phantom chain system, thus for swollen rubbers or rubbers gelled in a solvent at fairly
low polymer densities excluded volume effects could well be more important. At higher and
higher densities the chains must become more and more entangled and in crepe rubber it is these
entanglements that give rise to the elasticity. At sufficiently high densities it could well be that
a regime exists where the topological nature of the chains (i.e. their length and the fact that they
are not phantom) is far more important than the details of the molecular forces. It is in this spirit
that this section will be developed.

In setting up the problem a specification for the topology of the network must now include
the entanglements of the chain as well as the crosslinks. The entanglements will be specified by
invariants. The basic idea is that a knot is a topological classification. A knot in one class cannot
be topologically deformed into a knot of another. However, ‘invariants’ can be written down that
also classify topologies, and although this classification is different from the knot classification
(it appears an infinite number of invariants are needed to classify one class of knot) the first class
of invariant seems an adequate way to specify the entanglement topology of the network. Con-
sider the two diagrams

Qg G

R R, (s) Ri() R,(

Ficure 10 Ficure 11

An invariant [;, can be defined that distinguishes between (a) and (4). Figure 11 is the familiar

integral of Gauss Ry(s)) x Ry(sy) - (Ry(s) = Ry(sy) ;
112 - §d51§d52 |R1(51) *R2(52)|3 ) (0.1)
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THE THEORY OF RUBBER ELASTICITY 343

I, is like a solid angle and is analogous to the scalar magnetic potential.
I, =0 for (a) and I, = 4= for (b).

(Note, in order that these Invariants are truly conserved the chains have to be either infinite in
length or closed.)

The important point is that when I}, = 4= the loops cannot be pulled apart. A more compli-
cated invariant I, exists for three loops that can distinguish Borromean Rings (i.e. [}, = 53 =
I3 = 0 but I53 # 0). Borromean Rings can be pulled apart if any one ring is removed but not
if all three are present.

(Q-: Borromean Rings

Ficure 12
Similarly there exist self invariants.

= | ds s Rl(‘fl) X R1(52) (Ry(s1) = Ry(s9))
N e R e cn (52)

and higher invariants 1,3, for four loops, etc. Thus a simple knot for one chain has to be specified

by (111, 11115 L1111 - --)- The most important restriction comes in the first invariant I,,. If this is
conserved in the network then hopefully the conservation of the other invariants will have a small
effect. [;, s basically a two-body effect, the rest of the invariants three-body and higher. It should
also be noted that in the continuum chain model used knots may exist on any length scale with
equal ‘measure’ or weight (i.e. in lengths very much smaller than [ the random flight step length).
Thus putting in chain stiffness or cutting of integrals at § < { will exclude the existence of these
knots which often lead to divergences in the theory.

"The specification of entanglements being settled on, now the general partition function for
the n + 1 systems can be set up. The theory will be for dense rubbers (melts not gels), thus excluded
volume effects will be left out since a full theory of liquids would be needed to put molecular
forces in as discussed previously, also chain statistics are very little altered in the melt. The
starting point will be (3.13)

n n 3L L L N
Z(n) = f T 8R(s) exp (Eo 0 ds) [ f s f s S(R(s,) R(“)(sg))] . (5.3)
this specifies the crosslinking. The conservation of the invariant I}, can be put in by the constraints
I,[RO] = I,[R*] for all & # 0.

n n 3L L L N
Thus  Z(n) = | TT R@(s) exp( p ———f R ds) [f d“vlf d523(R(1a)"R§a))]
@=0 a=o 20} 0 0
x ]nI O(I[RO] — I[R@Y]). (5.4)
a=1
Since the invariant / changes by multiples of 47 the delta functions in

n
11 6(I[RO] —I[R@]) (5.5)
a=0

are Kronecker delta functions and not Dirac delta functions.

30-2
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344 R. T.DEAM AND S.F. EDWARDS

We shall now use exactly the same approach to solve the functional integral for Z(n) as set
out previously. The same transformation of variables 7% and the same Green functions will be
used.

The U -V in formula (3.4) now becomes

L L n n L n
VeU-=p f ds, f ds, TT 8(XP - XP) + 3 In8(I[RO] — I[R@]) — } f dsy 3w xer,
0 0 p=0 a=1 0 74=1
(5.6)
n n
where the ] (6(/[R©®] —I[R@])) has been rewritten exp( Y Ind(I[RW] -1 [R(")])). Introduc-
a=1 a=1

L
ing collective variables p;, = f ek X® ds as before and averaging (V — U) over all systems except
0

XO we have
V= U0 = AW) pyo_=Fonll 5 03+ S I8RO - I[RE)) Yo (57)

The first two terms are unchanged. In fact with excluded volume forces (V' — Uz, looks like
V=Upro = phpyp_y,—1gnlL X 0, = v(k) prp_y, +< Z Ind(I[RO] -1 [R“")])>ﬂ¢0- (5.8)

So the problem is in the same form as before with the effect of entanglements added into the
exponent as < %1 Ind(I[RO] —1 [R(“)])> which now will be expressed in terms of the collective
variables. Givgr: that / changes by multiples of 4, the Kronecker function can be written as

0(AI) = sin ($AI)[3AI (5.9)
(AI = 4mnyn = 0, + 1, +2,...). When many entanglements are present each contributing a small
effect one can use an expansion for the sine:

U (5.10)

(AL = 1-Z5—+ ...

Expansion of the Kronecker delta function to this order should be a good approximation provided
that the system is well gelled, the justification becoming clearer as the calculation develops.

Thus consider I[R®] —I[RO] = I[ARO 4 @] — [[RO]. (5.11)
It is a property of the invariants that they are conserved under any topological deformation,

e.g. I[R©] = I[AR®] since the affine deformation does not alter the topology. Therefore if ()
is small, which is true when the system is well gelled, then

I[R@] ~ I[AR9] = I[RO],

Thus I[R@] —I[R®] is a good expansion parameter when the localization is good (i.e. when
wislarge). Now we may use the formula for the invariants to write down the values of (A7)?, where

AT = I[R®] —I[RO].

Thus
o [P [P RO RO(ss) (R (50) = RE(s)) , RO(s9) RO(s) (R (s3) — RP(s,)
e R | - o il e S ey ichia

[ R (55) R;a) (%) (R%x ) (55) — RY (s5))
X | €5 i

RO (5) BO(s9) (RO (52) ~RO(s))] 4. .
|R(a)(S5) _ R(“)(Ss) [3 15k 1o 8

[RO(s,) — RO(sy [
(5.12)
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THE THEORY OF RUBBER ELASTICITY 345

It is shown in appendix 3 that, provided the correlation term — /[2w;exp (—4lw;(s;—s5,)) is
neglected,

RO (57) B9 (59)) = }8(s,—52) 85 (all @) (5.13)
and (RO (s) R9(s,)> ~ 0 (@ + 0). (5.14)

We may average over all directions of the chain tangents at s; and s, giving

2 1 1
(A7) = ff(m(‘”)(»‘l) _ R(a)(52)|4+ [RO(s,) = R(o)(52)|4) ds; ds,. (5.15)

Thus writing (AI)? in terms of collective coordinates

0 L
(A 1)2 =3 f dsl j d52 [ .ﬂ'(k) eik(R(“)(sl)—R(“)(sz)) + J(k) eik(R(")(sl)—R(o)(sz))]’ ( 5.16)
kJoO 0
| R
where (k) = |—R-I—ae"‘ Rd3R. (5.17)

(k) is infinite but it must be recalled that the entanglements only have meaning on length
scales greater than one step length /. Thus . (k) may be cut off by taking R~ to be a phenomeno-
logical parameter C times the function

J‘C8(R) d*R =C =~ J(k) (5.18)
C being the order /[~1. Thus
(AI)? = % Cﬂ-exp {ik. [T;(Xﬁ‘”—Xg"’) + % T;‘;(X?”-—Xgﬂ))]:

=1
+exp {ik . [Tg(X{‘” - X®) + % THXP - Xg”’)] } ds, ds,. (5.19)
A=1
. L .
Averaging over the X systems and introducing p,, =f el X ds as before,
0

(AI)? = % Clorgupr@rexp (— py K1 — T2 |0;) + prgupr@nexp (— g B(1-T% )] (5.20)

= s[5 (gm) e (- 20 - T T

i

+[3(7p) | exp (- B80 - T80, 7| 6. (5.21)
= X Lk, 0,1) 22.3! pp_s (5.22)

by using ' Te = AJ(1+7A2)} and  TO = 1/(1+nA2)d,
This gives 0(I[R¥] —I[RO]) = (1— %}pkp_klz(k, w,n) +...). (5.23)

Now the invariant conserving constraint comes into the expression for the generalized partition
n
function as [T 6(/[R@] —I[RYY]).
a=1

In collective variables with the Kronecker delta function expanded to first order this looks like

n

IT (1 _Zilz(k, W, 1) PP—p)- (5.24)

a=1


http://rsta.royalsocietypublishing.org/

. \
A 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

346 R. T.DEAM AND S.F. EDWARDS

This is a finite product expression for the z systems and excludes terms

% (kZ Lk, 0,n) prp_y)*

=1
and those of higher order i (X Lpppp)™ (m>1), (5.25)
a=1 k
Le. Pate (1 ‘“%Iz(k: w, n) pkp~k) = 1+a§1 (glz(k, W, n)pkp—k)
+ E Z (E-[z(k>wan)pkp——k)+"" (5'26)
a:%}:l k

A better approximation for §(I) could be thought to be §(I) ~ eI, but this is no good because

7
this tneludes 3, (X I,p.p_;)? as may be seen on expansion,
a=1 k

" 2
n n (dgl },Elzpkp—k)
aI—I1 exp (% Lipyp_y) =1 —OEI (% Loprpi) +—— 2 s (6.27)

which is correct to first order in /, but includes the terms
n
21 (; Lpip_i)™[(=1)"[m!] for m > 1.
a=1 %

It is important to exclude these terms because they come into the final answer at order » which
means they contribute to £.
Therefore an improved approximation to 6(/[R@] —I[R®]) is given by

S(ITR®] ~I[RO]) = T1 (1= Ly(k, 0,1) pp-s), (5.28)

which in the limit Ak—> 0 tends to exp (— X I,p,p_;), but writing the full expression for the
k
constraints, n
I S([R®] - I[RO]) = T TI (1~ y(k, 0,1) prp ), (5.29)
which explicitly excludes terms % (X Lpyp_s)™ for m > 1 because of the finite product nature of
a=1 k

the form.
Thus we may write

exp( g’, Ind(I[R@] —I[R(O)])) ~ exp( ﬁ] Sin(1 —Izpkp_k)). (5.30)
a=1 a=1 k

This approximation has the correct properties to order 7 in the exponent.
Now we may write down the full expression for Z(z) including entanglements using (5.5) and

(3.4). Ul
s || L dprdp_rexp (Apprp_+nln (1=Lyppp_y)
Nt k

~VePrP i — PPkl <PrP—1y — TsniL EI: ;). (5.31)

Z(n) 2

In order to do this functional integral the even density assumption must be employed, even without
excluded volume (the polymerization takes place at the even density of the monomer, thus
locking the entanglements in at uniform density). The difference between this and the phantom
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THE THEORY OF RUBBER ELASTICITY 347

chain calculation being that once the entanglements are locked in stability is given to the rubber.

The rubber cannot ‘clump up’ into the centre of the box because the entanglements do not

allow it. The short range forces X\ V;,p, p_; damp out large fluctuations in the density as argued
P2

in chapter two, thus

duN'! ,
2(0) 2 5% exp (SEAmpup ) +oln (1= (k 0,1) Goup o)) - Bl B0 (5.32)

(even without crosslinks and short range forces this gives

duN!
2(0) 2 $ 942 exp (1.3 In (1= L, 0,1) Coup oY) — anlL. S 0) (5.33)
for small 7). Thus the crosslinks give the same result as before, (3.69),
12
Ek_: Aulprp_1y = Aﬂ[m +Lg:l (5.34)
. 1(3)\#1
with g = E (5;‘57) -lg, (535)

where the main contribution to the elasticity for the crosslinks will be from the £ = 0 mode as
before. The entanglements yield

n kZ In (1—1,(k, ©,n) {prp_p)- (5.36)

Using (5.21) for I,(k, w, n) and putting n = 0in the I,(%, w, n) because it is only terms linear in the
exponent that contribute to £, we have

1
(k0,1 = 0) = G| (S55) exp (5 (122 -1) (k) +3]. (5.37)
(2 i %
Expanding the logarithm out in a series about the X©@ contribution since the fluctuations
(i.e. g’s) will be small, gives

Cz(zi‘: 1/23) (1 —exp (~ %‘« (1/A%—1) (kY w;))) {prP—1)
1— Cz[(? 1/A3) + 31 {prp—1)

+ee
(5.38)

oz (al(z) o)

Where the first term is entirely due to the X@ or ‘centre of mass’ coordinate and the other terms
are due to localization around the X coordinate. Only terms of order 1jw;(1/w; = {g®*>) will
be retained in this expansion since the localization is strong (i.e. large ;). It is the term in 1/w
which will be variational balanced against the trial potential

n L
- Sz f X ds =~ dynll S0,

Thus rewriting (5.38) we have

n % J\ —1Iy(k) {prp—iy +1n (1 = Ly(k) prp—1)) + Lo(E) {prp—r)

Co(Z1/AY) (1 —exp (= X (1/A% ~ 1) (K,))) Sorp—1)

* 1-Co((X 1/A23) + 3) {prp—p) + } (5.39)
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348 R.T.DEAM AND S.F. EDWARDS
where L(k) = CX (13 +1) =1, (ko =0,n=0). (5.40)

The integrals have to be cut off at some £ = 1/, where the cut off represents some property of
chain stiffness. Thus (6.11) becomes on doing the integrals

L i1 1 61%
Hs(=+1)5] Lot
{ 63 (1) [2o+5 (5m) ]+l (1) 1] 2
Co(Z1/A3) (1 —exp (- X (/A - 1) (K¥fw)) <P
G - 5.41

SO B VN (o:41)
(using {p.p_1y = 6p[lk* for n = 0--see (3.8)). p = L[V, density at fabrication. The X© contribu-
tion to the entanglements has been to give the well known Mooney—Rivlin (Mooney 1940; Rivlin
1948, 1949) term at the £ = 0 mode, plus a term of the opposite sign due to the fluctuations in

the X© system. The fluctuation in the X systems may now be calculated and the calculation
completed. The X® systems contribute approximately

Co(Z 1/A7) (1 —exp (= X (/A1 1) (KYf0)) <pup-r)

[ _Cz(zi: (1A% + 1)) ppp_ry }

UMD (B W) )
(z (1A% + 1)) prp_r) ’

+

pX

k

~ X (5.42)
k

where the sum is to be cut off at large £ = 1/I,.

Sum [ VEQECA(S (1) (3 (1A= 1) (k00) <pp-1d (1+ Co(S (1AF+ 1)) Goupos + .
- v (3 [P L S (1))

- o (3x )[Z(I/A; S a2 () 7) (5.43)

I, is like a self-entanglement length. Putting all this in the formula for Z(n), (5.32), we have

> 5o 2] o3 ()] £ 3

1 6]% 6L{ .1 122 —1
+nC‘§[Z (ﬁ + 1) 7] Lpk+nCy—r (E@;E) [; (“'/TZ‘_)]

K]

1 C 6 nlL
(e (3 () 7)) -T2 Sy, (5.44)
PZARL 1/ 3\1
where A= H(“’z’) s =§(2—1r7)2§ (5.45)

Thus applying (2.19) to find the first order in

Fg kT[gv(1+C/p)2)t ~C, 2(A2+1) [Lp-]—é(%_z)%ll%]

+(§%)%[E(Alz )] Lp%._-—zlnw+ Zw

)[R T
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THE THEORY OF RUBBER ELASTICITY 349

As before, w; is found by the variational principle

F(w) =0,

1

g&*CZSIL(EP)(;ﬁsz (Z( H) l)[ 1] i (547

(2

) (G NI

When crosslinks dominate the localization:

Therefore

w; = QLA{ (independent of A; as before)

and when entanglements dominate:

DG o

self-entanglements nof dominant:

(1/615)* < Cypfl, (5.50)
which for small strains ¢;, (A; = 1-+¢;) and taking terms linear in ¢’s only gives
6N Co\2(N\p
Wy =5 + 24( 7 ) (f) L 36¢;. (5.51)

Therefore the free energy is given by (5.46) with w; given by (5.48). Since the model is valid at
high densities (when entanglements will dominate over molecular forces in shear) (5.46) can
be simplified

~ 6C, 1 3
Fs kT[ S22 C 1pz(/\2+ 1) ( z ) Lp»[z (/\2 )] +f(w)], (5.52)
where f () is given by the o dependent terms in (5.46) but has two limiting cases:
3
(1) Highly crosslinked rubber (L > 4C, (” ) )

) = S5 1p(5) (S5) (3

G- 2)- @59

3
(2) Lightly crosslinked lubber( <40, (ll ) )

s+~ Sn(s S () 3 ) 4]
S (5o

Summarizing equation (5.52) we have the normal crosslink contribution plus a term due to the
affine deformation on the entanglements plus another term due to the non-affine part of the

for small strains.

31 Vol. 280. A.
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350 R. T.DEAM AND S. F. EDWARDS

deformation on the entanglements. The f(w) is due to the fluctuations about the mean deformed
position of the chain. As can be seen from (5.52) an equilibrium is assured by the entanglements
and excluded volume is no longer needed to provide the equilibrium. It should be noted that
the density, p, in all these equations is the density at fabrication (i.e. independent of the A’s).
Various special problems could now be studied, for example the problem of polymer ring
molecules formed at high density so that they are entangled. The only change in the mathematics

being that {p;p_;) is now given (upos> = pexp (= IRL[6), (5.55)

where L now is the length of circumference of the ring. This solid would exhibit the Mooney-
Rivlin term but the non-affine term and the fluctuation term would be different.

6. CONCLUSIONS

The defects of the phantom chain model of a rubber have the consequence of not allowing an
even density state for the rubber, unless the even density state is artificially imposed on it through
cyclic boundary conditions. If this is done the rubber is not in equilibrium. Modification of the
model to include entanglements and excluded volume forces give rise to the equilibrium even
density state. At low polymer densities excluded volume effects dominate in providing this even
density, at high densities entanglements alone are sufficient. The localization of the polymer
chains which is so necessary in gel formation, for if the chains did not localize then the network
would remain a liquid, has been found by a self-consistent field approach.

The simple physical argument used by Flory to justify the — NIn A, A, A, term in the free energy
can only be used for solutions not gels. The argument is that each crosslink takes away one degree
of freedom and the chains are in a volume VA, A, A,. Therefore the free energy must have a term
like — NInA,A,A, in it. This is right provided the system has not gelled (and therefore is not
a solid) having the whole volume VA, A, A, available to it. In a gel, however, each monomer of
the chain is localized in a volume of (0, v, )=}, thus Nln (w,w,»,)~%is the term that comes into
the free energy. For a crosslink dominated gel  is independent of A, therefore there is no
— NIn2,A,A,. However, for an entanglement dominated rubber o is a subtle function of A, thus
a term —4Nlnw(A) comes in.

The excluded volume calculation finds that less closed loops (i.e. wasted crosslinks) are formed
in the crosslinking process and a modification to the heat of mixing not in Flory-Huggins type
theories which is due to an enhancement of the excluded volume by the crosslinking. The
entanglement calculation derives the empirical Mooney—Rivlin term plus another term which is
due to the non-affine deformation of the polymer chains and comes in with the opposite sign of
the Mooney-Rivlin term.

APPENDIX 1
It is required to calculate {g{%).

Now < f ds, f ds, H S(R® — R;«>)>N (all R(s));

therefore

N
Z(n, n®) < f ds, f ds, H S(R{ — Rg"‘))> (all coordinates except #&),

SNy»?* 3N p@»?
= constant x exp (___'7_ _ SN 1y )’



http://rsta.royalsocietypublishing.org/

A\
A\
A

L9

A

Py
/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/ﬁ \
0

43

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE THEORY OF RUBBER ELASTICITY 351

where the integration is over all coordinates except #{®. Now the average may be calculated

GOy = f Z(n, 77m @2 d

3NL
— ()2 (a\” (a)
[t ""P( Ly s

where A" is the normalization.
< (a)2> _ 120s,(L~s,)
27 3NL °

which averaging over all 5, and s, given 0 < 5, < 5, < L yields

L
(04)2 —_—

APPENDIX 2

An example of the transformation 77, where X/(s) = TZ R (s)

ais

a (0) (1) . . R
) . . .
(0 . (1+aA3) Ay(14naz)h
VA (1)
1 2iafin
0 :/;e 74k
X,
- B () : . ¢
a . . .
0 . (1+n23)F Ay (14n29)7E 0 0
(1) A (1 +nA2)-4 —:/—(—n—)(l+n/\§)—% 0 0
__l__e.——2ﬂlaﬁ/n
V(n)
R

APPENDIX 3
To calculate (R (s,) R (s,)). Introduce the variables

L
xp =f0 dseies XA (s). (A 3.1)

31-2
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_3

L
So that GO = 4" f X O(s) exp(—%f Xor ds) =N f I1dX, eXP( 3]
0 q

3 (L . L
GO = A f SXA(s) exp(-—% f Xor ds-éwz f X ds)
0 0

l

qz)(qx_q), (A 3.2)

.—:./VfH quexp(~(§32q2+Ew2)XqX_q). (A 3.3)
q

3

Thus (XO(s,) XO(55)) = N f ITdX, (X qX, €% 3 ¢’ X el7%) exp ( ——2—lq2XqX_q)
a q a

1 qq' eigs1—ig's;

2 GEE 313(s1—53),

= %X 0q¢
a q

3

(A 3.4)

(X (s)) XO(s)y = N f [1dX,(3 X, it 3 ' X, 60%) exp (— [— e w2] XqX_q)
q 4 qa

B
_ ,1 qq’ elgs1—ig’s;
= 2299332 o 3l
1, HHow?eldsisl
) 32 BN AT T

= 1 8(s; —5,) — Hhle e~ lsr—sal

= 18(s,—

Also (XO(s5,) XOs9)) = 0 (B # "),
since R™(s) = % 5 XP(s).
£=0
Then R () BO(s)) = 3 | T4 [2418(5,—5,) — 5 | T5;|? 5l3lw e~ s,
p=0 =1

” n ’ n ’
RO RO (5 = 3 T3, T 0(s1=5) = X Th, T 4l o e i,
A=0

p=1

n n
But Y Tg2=1 and X T§Th =0 (a+#a),
£=0 f=1

therefore neglecting the e~ 11—l terms we have the desired form.
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